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SUMMARY

Discrete and continuous adjoint approaches for use in aerodynamic shape optimization problems at all
flow speeds are developed and assessed. They are based on the Navier–Stokes equations with low Mach
number preconditioning. By alleviating the large disparity between acoustic waves and fluid speeds, the
preconditioned flow and adjoint equations are numerically solved with affordable CPU cost, even at the so-
called incompressible flow conditions. Either by employing the adjoint to the preconditioned flow equations
or by preconditioning the adjoint to the ‘standard’ flow equations (under certain conditions the two
formulations become equivalent, as proved in this paper), efficient optimization methods with reasonable
cost per optimization cycle, even at very low Mach numbers, are derived. During the mathematical
development, a couple of assumptions are made which are proved to be harmless to the accuracy in
the computed gradients and the effectiveness of the optimization method. The proposed approaches are
validated in inviscid and viscous flows in external aerodynamics and turbomachinery flows at various
Mach numbers. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

During the last years, significant progress has been made in the use of adjoint codes in aerodynamic
shape optimization problems. Working with deterministic optimization methods, the ability to
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efficiently compute the gradient of an objective function F with respect to the design variables is
crucial. In view of the above, the main advantage of the adjoint technique is that it computes the
sensitivity derivatives of F at the cost of an ‘equivalent’ flow solution, irrespective of the number
of design variables. This cost is quite low, compared with that of other methods, such as finite
differences or the complex variable technique [1]. When the gradients are available, methods such
as steepest descent, conjugate gradient or quasi-Newton can be used. Two adjoint approaches, the
continuous and the discrete one, can be found in the literature. In the continuous approach, the
adjoint partial differential equations are first derived from the flow ones and, then, discretized and
numerically solved. In the discrete approach, the discrete adjoint equations are derived directly
from the discretized flow equations. A detailed comparison of the two approaches can be found
in [2].

In fluid mechanics, the adjoint method was introduced by Pironneau [3] for potential flows,
although Jameson was the first to use the continuous adjoint method with hyperbolic flow equations
[4, 5]. Since then, the progress in the use of adjoint techniques in the field of aerodynamics
was significant; several groups have developed adjoint codes based on either the continuous
[4, 6, 7] or the discrete approach [8, 9], using the Euler or the Navier–Stokes equations as state
equations. Nowadays, the use of adjoint approaches is extended to the design of complete aircraft
configurations [10–12]. In turbulent flows, the introduction of additional adjoint equations that
are dual to the turbulence model equations has been proposed in [9, 13]; however, many well-
performing adjoint methods ignore these extra equations. Apart from shape reconstruction problems
based on a given pressure distribution over the shape contour, other objective functions dealing
with drag minimization and/or lift maximization, shock wave reduction in external aerodynamics
[14, 15], losses minimization in cascades [16], etc. are in use. Adjoint formulations for unsteady
aerodynamic design have been presented in [17, 18]. To further reduce the optimization CPU
cost, instead of separately solving the flow and adjoint equations along with the equation to
update the design variables, all three of them can simultaneously be solved, through the so-called
one-shot method [19–21]. A different approach which, under circumstances, may lower the total
computational cost is the incomplete gradient method [22, 23], whereby terms of minor importance
in the gradient expression are omitted. By doing so, the sensitivity derivatives become less accurate
although the method usually becomes more efficient.

All adjoint formulations in the literature have been derived starting from the non-preconditioned
Navier–Stokes equations; hence, the numerical solution of both the flow and adjoint equations
suffers from excessive CPU cost when low-speed designs are carried out. Hence, in this case, an
optimization algorithm based on the corresponding non-preconditioned adjoint method performs
badly. It is known that the main reason for the performance degradation of time-marching compress-
ible flow solvers at low speeds is the large disparity between acoustic waves and fluid speeds in
both the flow and adjoint equations. Hence, during the optimization cycle, the observed degra-
dation in convergence speed at low flow speeds is associated with both the numerical solution
of the flow equations and that of the adjoint equations. As a remedy to this problem, Turkel
[24] proposed the use of preconditioned flow equations, formed by multiplying their pseudo-time
derivative by the preconditioning matrix. Dealing with steady flows, preconditioning by no means
affects the steady-state solution of the flow equations. Various preconditioning matrices for the
flow equations have been proposed [24–26]. They are all defined in terms of the local Mach
number and degenerate to the unit matrix at sonic speed. The expected gain from the use of low
Mach number preconditioned compressible fluid flow codes becomes noticeable at very low flow
speeds, practically at the so-called incompressible flow regime.
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Considering the aforementioned convergence speed degradation, an adjoint formulation for the
preconditioned Navier–Stokes equations is proposed. Our aim is to develop a system of adjoint
equations that are dual to the preconditioned flow equations and, hence, converge satisfactorily
even at low flow speeds. The theoretical development is presented for both discrete and continuous
approaches. The continuous adjoint is based on the formulation proposed in [27] for the non-
preconditioned Navier–Stokes equations. As in [27], the resulting expression for the gradient of the
objective function is free of field integrals of variations in nodal coordinates, i.e. field variations
in grid metrics.

2. PRECONDITIONED NAVIER–STOKES EQUATIONS

2.1. Formulation

The Navier–Stokes equations are expressed in the conservative form as

�U
�t

+ �finvi
�xi

− �fvisi

�xi
=0 (1)

where U=[�,�u,E]T is the vector of conservative variables. The inviscid and viscous fluxes are
given by

finvi =
⎡
⎢⎣

�ui

�uiu+ pdi

ui (E+ p)

⎤
⎥⎦ , fvisi =

⎡
⎢⎣

0

si

u j�i j +qi

⎤
⎥⎦ (2)

where u is the velocity vector, si =[�i1,�i2]T are the viscous stresses, di =[�i1,�i2]T are the
Kronecker symbols and qi =k�T /�xi are the thermal flux components. The low Mach precondi-
tioned Navier–Stokes equations are derived from Equation (1) by multiplying the pseudotime-step
term by the inverse of the preconditioning matrix �. Hence

�U
�t

+�

(
�finvi
�xi

− �fvisi

�xi

)
=0 (3)

� is given by [25]

�=
(

�U
�V

)
⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 −1−a

c2

0 1 0 0

0 0 1 0

0 0 0 a

⎤
⎥⎥⎥⎥⎥⎥⎦
(

�U
�V

)−1

(4)

where V=[�,u, p]T is the vector of non-conservative variables, (�U/�V) is the transformation
matrix from the non-conservative to the conservative variables and a=min(1,M2), where M is
the local Mach number. Hence, the inviscid part of the preconditioned Navier–Stokes equations
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Figure 1. Comparison of the condition number (|�max|/|�min|) of the preconditioned and non-preconditioned
systems in the range 0.01�M�0.1.

is expressed as

�U
�t

+A�x

�U
�x

+A�y

�U
�y

=0 (5)

where A�x =�Ax and A�y =�Ay are the preconditioned Jacobians. Their eigenvalues

�1=�2=u·n, �3,4= 1

2

{
(1+a)u·n±

√
[(1−a)u·n]2+4ac2|n|2

}
(6)

are much more clustered than those of the non-preconditioned system (�∗
1=�∗

2=u·n, �∗
3,4=u·

n±c|n|) ensuring, thus, better convergence properties. Figure 1 compares the ratio |�max|/|�min|
(condition number) of the two systems. As the Mach number approaches zero, the condition
number of the non-preconditioned equations increases, leading to an ill-conditioned system with
slow convergence characteristics; in contrast, the condition number of the preconditioned system
remains close to unit.

2.2. Discretization and numerical solution

The finite-volume technique with a second-order upwind scheme for the inviscid fluxes is used
for the solution of the flow equations on unstructured grids with triangular elements. At each
grid node P , the corresponding finite volume �P is defined by connecting the barycentres of the
surrounding triangles and the mid-points of the edges emanating from P (Figure 2). Along its
boundary ��P , the outward normal vector is denoted by n=(nx ,ny). By integrating Equations
(3) over the finite volume of node P , we obtain

�P

�tP
�UP +�P

∑
Q∈nei(P)

UPQ=0 (7)
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Figure 2. Control volume surrounding a node of an unstructured grid with triangular elements.

where UPQ is the numerical flux (fi ni ) associated with the part of ��P which is the interface of
the finite volumes of P and Q. Equation (7) is expressed as

�P

�tP
�UP +R�

P =0 (8)

where R�
P =�PRP and

RP = ∑
Q∈nei(P)

Uinv
PQ− ∑

T∈neiT (P)

Uvis
P,T (9)

where nei(P) denotes the set of the neighbouring nodes linked to P by a grid edge and neiT (P)

is the set of triangles surrounding P . Equation (9) is compatible with an edge-based discretization
scheme for the convection terms and an element-based scheme for the viscous ones.

A 1D Roe approximate Riemann solver [28] is used to compute the inviscid fluxes Uinv
PQ and

second-order accuracy is obtained through variables’ extrapolation. Hence, for the preconditioned
flow equations, according to van Leer et al. [29], the inviscid numerical flux can be expressed
as

Uinv
PQ = 1

2 [APUP +AQUQ]− 1
2�

−1�| ÃPQ|�UPQ

� 1
2 [APUP +AQUQ]− 1

2 �̃
−1
PQ| Ã�PQ |�UPQ (10)

where Ai =�fi/�U, AP = AiP nPQ,i , AQ = AiQnPQ,i , whereas | ÃPQ| is the Roe-averaged Jacobian
at the midnode and �UPQ=UQ−UP . The viscous fluxes are computed by assuming linearly
distributed primitive flow variables V over each triangular element. To deal with turbulent flows,
the Spalart–Allmaras [30] turbulence model is used. The numerical solution of the discretized
preconditioned flow equations is carried out using the point-implicit Jacobi method.
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3. ADJOINT FORMULATION BASED ON THE PRECONDITIONED FLOW EQUATIONS

3.1. Objective functions

The inverse design of isolated or cascade airfoils that reproduce a desired pressure distribution
ptar(s) over the solid walls Sw can be associated with the minimization of the objective function

F= 1

2

∫
Sw

(p− ptar)
2 dS (11)

The variation in F due to any variation in the design variables b is

�F=
∫
Sw

(p− ptar)�pdS+ 1

2

∫
Sw

(p− ptar)
2�(dS) (12)

where �(dS)=�1(�b) depends on the parameterization.
On the other hand, the design of an airfoil with minimum drag (cd) and given lift coefficient

(cl=cltar) can be based on the following objective function:

F=(cl−cltar)
2+�c2d (13)

where � scales the relative significance of lift and drag. The variation in F is given by

�F=2(cl−cltar)�cl+2�cd�cd (14)

with

cd,l = 1

�

∫
p(q1 cosa+q2 sina)dS

�cd,l = 1

�

∫
�p(q1 cosa+q2 sina)dS+ 1

�

∫
p cosa�(q1 dS)+ 1

�

∫
p sina�(q2 dS)

(15)

where (q1,q2)=(n1,n2) for cd or (q1,q2)=(t1, t2) for cl, t=(t1, t2)=(n2,−n1) is the tangent
vector, a is the infinite flow angle, � is the usual denominator used in the definition of cl and cd
(�= 1

2�|u|2C , where C is the chord) and �(qi dS)=�2(�b) depends on the parameterization of
the shape. Equation (15) was written for inviscid flows, although its viscous counterpart (including
viscous stresses) will be used in the Results section.

3.2. Continuous adjoint formulation using preconditioning

In this section, the continuous adjoint method for the inverse design of aerodynamic shapes at low
Mach number flows, based on the preconditioned Navier–Stokes equations as state equations, is
presented. The variation in the augmented objective function is expressed as

�Faug=�F+
∫

�
WT�

[
�

(
�fi
�xi

)]
d�=�F+

∫
�
WT��

(
�fi
�xi

)
d� (16)
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where fi = finvi −fvisi . Note that no assumption about �� is made since �fi/�xi =0. From a different
viewpoint, one may consider the last integrand in Equation (16) to be the product of the adjoint
vector W and the variation in the flow equations multiplied by �; both considerations lead to the
same expression. As proved in [27], the variation in the gradient of any quantity � is expressed
in terms of the gradient of �� and the variations in nodal coordinates, namely

�

(
��

�xi

)
= �(��)

�xi
− ��

�xk

�(�xk)

�xi
(17)

Consequently,

∫
�
WT

��

(
�fi
�xi

)
d�=

∫
�
WT

�
�(�fi )
�xi

d�−
∫

�
WT

�
�fi
�xk

�(�xk)

�xi
d� (18)

where W� =�TW will be referred to as the vector of preconditioned adjoint variables. It is a matter
of integration by parts to obtain∫

�
WT

��

(
�fi
�xi

)
d� = −

∫
�

�fTi
�W�

�xi
d�+

∫
Si,o,w
WT

��fi ni dS

+
∫

�

�
�xi

(
WT

�
�fi
�xk

)
�xk d�−

∫
Sw
WT

�
�fi
�xk

�xkni dS (19)

where Si, So and Sw are the inlet, outlet and wall boundaries, respectively. The last integral is
defined only along the parameterized solid walls, where �xk �=0. We further develop Equation (19)
separately for the inviscid and viscous terms. For the inviscid terms in Equation (19), we obtain∫

�
WT

��

(
�finvi
�xi

)
d� = −

∫
�

�finvTi
�W�

�xi
d�+

∫
Si,o

�UT(AT
nW�)dS

+
∫
Sw

��,i+1ni�pdS+
∫
Sw

[��,i+1 p−WT
�f

inv
i ]�(ni dS)

+
∫

�

�UT

�xk
AT
i
�W�

�xi
�xk d�−

∫
Sw

�UT

�xk
AT
nW��xk dS (20)

In case of viscous flows, two assumptions are made; the bulk viscosity is assumed to be
independent of the temperature and, for turbulent flows, the variation in the turbulent viscosity
coefficient is not taken into account. Hence

−
∫

�
WT

��

(
�fvisi

�xi

)
d� =

∫
�

�fvisTi
�W�

�xi
d�−

∫
Si,o,w
WT

��fvisi ni dS

−
∫

�

�
�xi

(
WT

�
�fvisi

�xk

)
�xk d�+

∫
Sw
WT

�
�fvisi

�xk
�xkni dS (21)
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For the viscous fluxes, we obtain

∫
�

�fvisTi
�W�

�xi
d� =

∫
�

��i j

(
��� j+1

�xi
+u j

���4

�xi

)
d�+

∫
�

�ui�i j
���4

�xi
d�

+
∫

�
�qi

���4

�xi
d� (22)

where the variation in stresses ��i j reads

��i j = 	

[(
�(�ui )

�x j
+ �(�u j )

�xi

)
− 2

3
�i j

�(�uk)

�xk

]

−	

[(
�ui
�xk

�(�xk)

�x j
+ �u j

�xk

�(�xk)

�xi

)
− 2

3
�i j

�ul
�xk

�(�xk)

�xl

]
(23)

The thermal flux variation term is expressed as

∫
�

�qi
���4

�xi
d�=

∫
�
k

(
�(�T )

�xi
− �T

�xk

�(�xk)

�xi

)
���4

�xi
d� (24)

where k is the coefficient of thermal conductivity. The first surface integral in Equation (21) is
further analysed as follows:

−
∫
Si,o,w
W��fvisTi ni dS=−

∫
Sw

[(��i+1 +ui��4)��i j +��4�i j�ui +��4�q j ]n j dS (25)

where all terms in Equation (25) containing velocities or their variations can be eliminated (no-slip
condition). Equations (16) and (18)–(25) produce the final expression for �Faug which is

�Faug = �F−
∫

�

(
�U− �U

�xk
�xk

)T(
AT
i
�W�

�xi

)
d�−

∫
�

(
�V− �V

�xk
�xk

)T

Kd�

−
∫
Sw

�UT

�xk
An

TW��xk dS+
∫
Sw

��i+1ni�pdS+
∫
Sw

[��i+1 p−WT
�f

inv
i ]�(ni dS)

+
∫
Si,o

�UT(AT
nW�)dS+

∫
Sw

k�T
���4

�xi
ni dS−

∫
Sw

��4�(q jn j dS)

+
∫
Sw

��4q j�(n j dS)−
∫
Sw

�ui
�xk

�(��)
i j �xkn j dS+

∫
Sw

��i+1

ni
�i j�(nin j )dS

−
∫
Sw

k
�T
�xk

���4

�xi
�xkni dS+

∫
Sw
W�

�fvisi

�xk
�xkni dS (26)
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In Equation (26), the elimination of field integrals expressed in terms of �U/�b=�U−�U/�xk�xk
requires the satisfaction of the field preconditioned adjoint equations

�W
�t

−AT
i
�(�TW)

�xi
−
(

�U
�V

)−T

K=0 (27)

The assumption that �T can be taken out of the spatial derivative is made and Equation (27) is,
finally, expressed as

�W
�t

−AT
�i

�W
�xi

−
(

�U
�V

)−T

K=0 (28)

where K stands for the diffusion terms

K1=−T

�

�
�x j

(
k
���4

�x j

)
, Ki+1= ��(��)

i j

�x j
−�i j

���4

�x j
, K4= T

p

�
�x j

(
k
���4

�x j

)

with i=1,2. �(��)
i j are the so-called ‘adjoint stresses’, given by

�(��)
i j =(	+	t )

[(
��� j+1

�xi
+u j

���4

�xi
+ ���i+1

�x j
+ui

���4

�x j

)
− 2

3
�i j

(
���k+1

�xk
+uk

���4

�xk

)]

The inlet–outlet boundary conditions are defined by eliminating from Equation (26) the integrals
of �U at the inlet and outlet:

�UT(AT
nW�)=0 (29)

The wall boundary conditions for the adjoint equations, Equations (27), depend on the objective
function under consideration. In an inverse design problem with the objective function defined by
Equation (11), the following conditions must be satisfied:

(p− ptar)+��i+1ni =0 (30)

for inviscid flows or

��i+1=−(p− ptar)ni , i=1,2 (31)

for viscous flows. To prove Equations (31), one may start from Equation (25); by virtue of the
solid wall condition �i j ni n j =0 (which is equivalent to �Vn/�n=0) or ��i j ni n j +�i j�(nin j )=0
(see also [27]), the first integral on the r.h.s. of Equation (25) can be expressed as

−
∫
Sw

��i+1��i j n j dS=−
∫
Sw

��i+1

ni
[��i j ni n j +�i j�(nin j )]dS+

∫
Sw

��i+1

ni
�i j�(nin j )dS

The first integral of this equation is eliminated by imposing ��2/n1=��3/n2 along the solid
walls which, combined with Equation (30), leads to Equations (31). Note that this integral does
not appear in Equation (26).

It is interesting to comment on Equations (30) and (31). For instance, in 2D design problems,
upon convergence (i.e. when p= ptar), the inviscid flow condition becomes ��,2n1+��,3n2=0,
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which is an equivalent no-penetration condition for the adjoint to the velocity components. Also,
the viscous flow condition gives ��,2=��,3=0, which stands for the equivalent no-slip condition
for the adjoint variables.

Irrespective of the objective function, integrals written in terms of �T and �(q jn j dS) define
the wall boundary condition for ��4 which depends on the wall temperature condition. Hence, for
constant wall temperature, a zero Dirichlet condition ��4 =0 is imposed; otherwise, for adiabatic
flow conditions, ���4/�xini =0.

The remaining terms in Equation (26) give the final expression for the variation in the augmented
function

�Faug = �Fb(�b)+
∫
Sw

[��i+1 p−WT
�f

inv
i ]�(ni dS)

−
∫
Sw

�UT

�xk
AT
nW��xk dS+

∫
Sw
WT

�
�fvisi

�xi
�xkni dS

+
∫
Sw

��i+1

ni
�i j�(nin j )dS+

∫
Sw

��4qi�(ni dS)

−
∫
Sw

�ui
�xk

�(��)
i j �xkn j dS−

∫
Sw

�T
�xk

k
���4

�xi
�xkni dS (32)

where, in inverse design problems,

�Fb(�b)= 1

2

∫
Sw

(p− ptar)
2�(dS) (33)

In Equation (32), variations including ni ,n j ,dS can be expressed as �(ni dS)=�3(�b) and
�(nin j )=�4(�b) (see Appendix). Finally, using Equation (32) with appropriate functions �1 to
�4 (depending on the shape parameterization), the gradient �F/�bi =�Faug/�bi can be computed
and used to support gradient-based methods.

The discretization of the preconditioned adjoint equations, Equation (28) (only the inviscid part
is of interest here), is carried out by integrating them over the finite volumes

∫
�

�W
�t

d�+
∫

��
(−AT�TW)d��=0 (34)

The discrete form of Equation (34) becomes

�P

�tP
�WP + ∑

Q∈nei(P)

U�
PQ=0 (35)

where, employing a Roe-like discretization, the adjoint flux is given by

U�
PQ= 1

2 (−AT
�P
WP −AT

�Q
WQ)− 1

2 | ÃT
�PQ

|(WQ−WP) (36)

and A� =�A.
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3.3. Discrete adjoint approach

The discrete adjoint approach is based on the discrete form of the preconditioned flow equations.
If R� =�R is the array of the discretized preconditioned residuals of the flow equations, according
to Equations (8) and (9), the gradients of F and R� with respect to b are expressed as

dF

db
= �F

�U
dU
db

+ �F
�b

(37)

dR�

db
= �R�

�U
dU
db

+ �R�

�b
=0 (38)

By using Equation (37) to eliminate dU/db from Equation (37), the derivative of F with respect
to the design variables becomes

dF

db
= �F

�b
+WT

�
�R
�b

(39)

where the adjoint variables W� =�TW are computed through the adjoint equations

(
�R
�U

)T

W�+
(

�F
�U

)T

=0 (40)

In both Equations (39) and (40), the variations in the preconditioned residual vector R� were
expressed in terms of variations in R as �R�/�b=��R/�b and �R�/�U=��R/�U, where the
term R��/�U is zero since R=0 in the steady solution.

4. RESULTS

The preconditioned continuous and discrete adjoint approaches are demonstrated on a number of
selected problems concerned with the inverse design and optimization of isolated and cascade
airfoils at inviscid, laminar and turbulent flows.

The parameterization of the airfoils is based on Bézier–Bernstein polynomials. Two Bézier–
Bernstein curves are used separately for the pressure and suction sides of each airfoil with fixed
control points at the leading and trailing points. Unstructured grids with triangular elements, gener-
ated using the advancing front technique and superimposed to structured-like layers of triangles
(stretched rectangular mesh whose elements split into triangles) surrounding the airfoil, are used.
The initial geometries are ‘randomly’ generated and the target pressure distributions for inverse
designs are obtained by solving the flow equations around ‘reference’ airfoils (‘reference’ airfoils
are those used to compute the target pressure distribution).

4.1. Inverse design of an isolated airfoil in inviscid flow

The first case involves the inverse design of an NACA4415 airfoil at very low Mach number flow
(M∞ =0.001) and infinite flow angle of a∞ =6◦, using the preconditioned continuous approach.
Figure 3 illustrates the initial and optimal airfoil contours together with the reference one and the
corresponding pressure distributions over the solid wall.
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Figure 3. Inverse design of an isolated airfoil, inviscid flow. Initial, reference and optimal airfoil contours
(not in scale, left) and the corresponding pressure distributions (right).
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Figure 4. Inverse design of an isolated airfoil, inviscid flow. Convergence history (left) of the objective
function and its gradient components for the initial airfoil computed using the preconditioned adjoint

methods (continuous and discrete) and finite differences (right).

In this case, 30 control points are used. All but the leading and trailing edge control points
are allowed to vary in both the chordwise and the normal-to-chord directions, summing up to
56 design variables. In Figure 4 (left), the convergence history of the optimization procedure is
shown. Although other descent methods are faster, the steepest descent method was used herein
since we did not focus on the reduction of the number of optimization cycles but rather on that
of the CPU cost per cycle. Each optimization cycle comprises of the solution of the flow and
adjoint equations. Assuming that they have almost equal CPU costs, the total required cost for
convergence is approximately equal to 200 equivalent flow solutions. In the same figure (right),
the objective function gradient values computed with the preconditioned continuous and discrete
adjoint methods are compared with the outcome of finite differences. The first 30 design variables
correspond to the chordwise (1–15) and normal-to-chord (16–30) control point coordinates of the
pressure side, from the trailing to the leading edge; the next 30 variables correspond to the control
points parameterizing the suction side (same sequence). The comparison is satisfactory despite
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Figure 5. Inverse design of an isolated airfoil, inviscid flow. Comparison of the convergence rate
of the flow (left) and adjoint (right) equations of an airfoil generated during the optimization loop

with and without preconditioning.

some discrepancies of the gradient values that the continuous method produces close to the leading
edge stagnation point.

The need for preconditioning both the flow and adjoint equations becomes clear in Figure 5,
where the speed up of both the direct and adjoint equations is shown. Without preconditioning,
the total optimization CPU cost becomes prohibitively high. Note, also, that the quality of the
computed gradient values shown in Figure 4 would be damaged if the user decided to stop the
runs (of both the direct and adjoint solver) prior to their convergence to machine accuracy.

4.2. Drag minimization in laminar flow

An airfoil shape optimization at laminar flow conditions is performed, targeting the minimization
of the drag coefficient while maintaining a specified lift. The objective function and its variation are
given by Equations (13) and (14), respectively. The free-stream Mach number is 0.01, the infinite
flow angle is 3◦ and the Reynolds number is 500. Eight Bézier control points are used for each
airfoil side. The unstructured mesh and the Mach number iso-lines of the flow field formed around
the initial airfoil are shown in Figure 6 (left). The initial control points and the corresponding
contour are plotted in Figure 6 (right). Note that the initial airfoil has different lift coefficient
values than the target one. The weight � is set to 0.01 and the target value for the lift coefficient
is cltar =0.0861.

In Figure 7, the initial and optimal airfoil shapes along with the corresponding pressure distri-
butions are plotted. The convergence of the objective function value is shown in Figure 8. Figure 9
shows the objective function gradient values computed using the discrete adjoint technique in
comparison with those computed using finite differences. For the purpose of a fair comparison,
all solvers (direct and adjoint) were run to convergence (around eight orders of magnitude drop in
residual for all equations). As shown here, the agreement between the plotted curves is satisfactory.
Finally, Figure 10 shows the speed up of both the direct and adjoint equations achieved, thanks
to the preconditioning. As in the previous case, if the preconditioning technique was not applied,
the CPU cost of the optimization cycle increases significantly.
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Figure 9. cd minimization with specified cl, laminar flow. Comparison of the gradient values computed
using preconditioned discrete adjoint method and finite differences.
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Figure 10. cd minimization with specified cl, laminar flow. Comparison of the convergence rate of the
flow (left) and adjoint (right) equations for the initial airfoil with and without preconditioning.

4.3. Inverse design of a compressor cascade

The last case is concerned with the inverse design of a compressor cascade in turbulent flow
conditions with isentropic exit Mach number M2,is=0.1, inlet flow angle a1=50◦ and Re=8×105,
using the preconditioned continuous approach. The Spalart–Allmaras turbulence model [30] is
used. Part of the unstructured grid near the wall region is initially formed by quadrilaterals, each
of which splits into two triangles before switching to a fully unstructured grid over the rest of the
domain.

The reference and optimal design with the corresponding pressure distributions are shown in
Figure 11. Figure 12 presents the reduction in the value of the objective function (right) and the
gradient computed with the preconditioned adjoint methods (continuous and discrete) and finite
differences. Some differences are due to the fact that variations in turbulent viscosity are not taken
into account during the formulation of the continuous adjoint equations. The same is valid for the
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Figure 11. Inverse design of a compressor cascade, turbulent flow. Reference and optimal airfoils (left)
and corresponding pressure distributions (right).
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Figure 12. Inverse design of a compressor cascade, turbulent flow. Convergence history (left) and compar-
ison of the gradient values computed using the preconditioned adjoint methods (continuous and discrete)

and finite differences (right).

discrete approach, where there is no adjoint to the turbulence equation. Finally, Figure 13 compares
the convergence rate for the flow and the adjoint equations with and without preconditioning. Even
at a speed, which is not that low (compared with the previous cases) preconditioning speeds up
the equations, and this is important for the whole optimization procedure that requires almost 80
cycles (or 160 equivalent solutions for the Navier–Stokes equations) using steepest descent.

5. CONCLUSIONS—COMMENTS

Preconditioned continuous and discrete adjoint formulations for the inverse design and optimization
of isolated and cascade airfoils at lowMach number flows were presented. The proposed continuous
approach relies upon an existing adjoint method for compressible flows which was adapted to
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Figure 13. Inverse design of a compressor cascade, turbulent flow. Comparison of the convergence
rate of the flow (left) and adjoint (right) equations for a cascade during optimization (cycle 46),

with and without preconditioning.

take into account the preconditioned Navier–Stokes equations. The proposed formulations for
continuous and discrete adjoints allow the inverse design and optimization of aerodynamic shapes at
very low Mach numbers with reasonable CPU cost. Otherwise, standard (without preconditioning)
compressible flow solvers and their adjoints become very costly or even fail to converge and so
does the optimization loop as a whole.

Given the advantages of the proposed formulations, it is important to comment on the two
possibilities to incorporate the preconditioner in the adjoint methods. There are two alternatives,
which are: (a) to set up the adjoint to the preconditioned flow equations as we did in this paper and
(b) to precondition the adjoint equations derived from the non-preconditioned flow equations. Under
certain assumptions, these can be proved to be equivalent. The preceding analysis of Section 3.2,
started from the preconditioned flow equations �U/�t+�Ai�U/�xi =0 (for the sake of simplicity,
we use the Euler equations) and concluded to the adjoint to the preconditioned equations, namely

�W
�t

−AT
i �T �W

�xi
=0 (41)

Another possibility would be to apply the preconditioner after obtaining the adjoint to the non-
preconditioned flow equations (i.e. �W/�t−AT

i �W/�xi =0). To do so, the time derivative of the
adjoint equations must be multiplied by the inverse transpose of an appropriate preconditioner D,
leading to

�W
�t

−DTAT
i
�W
�xi

=0 (42)

The last expression becomes identical to Equation (41) if we choose AD=�A. This is not an
arbitrary choice, because it assures that arrays AD and �A have the same eigenvalues, thus giving
rise to better convergence characteristics for both the flow and adjoint equations.
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APPENDIX A: SHAPE PARAMETERIZATION

The variations in the finite arc length dS, the dimensional normal vector components ni dS or
the grid coordinates x j over the airfoil are computed using the adopted parameterization scheme
which is, herein, based on Bézier–Bernstein polynomials [31]. The x j coordinates along the shape
contour are given by the expression

x j (t)=
M−1∑
i=0

Ci (t)Xi j (A1)

where j =1,2 in 2D, M is the number of control points (i=1, . . . ,M), Ci (t) are the Bézier–
Bernstein polynomials and Xi j are the control point coordinates. The variation in x j with respect
to Xi j is directly computed as

�x j =
M−1∑
i=0

Ci (t)�Xi j (A2)

The finite length dS is given by

(d S)2=(d t)2
(
M−1∑
i=0

Ċi (t)Xi j

)2

(A3)

where Ċi (t)=(dCi/dt)(t). Its variation with respect to the variation in the control points is given
by

�(dS)= (dt)2

dS
ẋ j

(
M−1∑
i=0

Ċi (t)�Xi j

)
(A4)

in which ẋi =dxi/dt=∑M−1
i=0 Ċi (t)Xi j . Since, in a 2D case,

n=(n1,n2)=
(

−dx2
dS

,
dx1
dS

)
(A5)

the variations in n1 and n2 are given by

�n1 = − dt

dS

(
(1−n21)

M−1∑
i=0

Ċi (t)�Xi2+n1n2
M−1∑
i=0

Ċi (t)�Xi1

)

�n2 = dt

dS

(
(1−n22)

M−1∑
i=0

Ċi (t)�Xi1+n1n2
M−1∑
i=0

Ċi (t)�Xi2

) (A6)

Variations in ni dS can be derived from Equations (A4) and (A6), in a straightforward manner, i.e.
�(ni dS)=�(ni )dS+ni�(dS)
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